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M O T I O N  O F  A S W I R L E D  F L U I D  I N  T H E  C O R E  O F  A 

V E R T I C A L ,  T O R N A D O - L I K E  V O R T E X  

V. V. Niknlin UDC 532.59 

The motion of a fluid in the core of a vertical, tornado-like vortex has been investigated in the longwave approximation 

in [1]. Rigorous results were obtained under the assumption that only the azimuthal vorticity component is nonzero in the vortex 
co re .  

In the present paper we consider the general case when both azimuthal and vertical vorticity components are nonzero 

in the core. Although the allowance made for the rotation of the fluid about an axis greatly complicates the analysis, some 
important features of  the motion can be established in this case as well. 

1. Sta tement  of  the Problem.  We examine an inviscid incompressible fluid in a gravity field. The flow is assumed 
to be steady and rotationally symmetric. We introduce a cylindrical system of coordinates (r, ~o, z), where r is the radius, ,p 

is the azimuth angle, z is the axis of  symmetry directed opposite to the force of  gravity. The region occupied by the fluid is 
separated into two parts: r <_ ro(z ) is the vortex core and r > ro(z) is the outer flow. At the core boundary, a jump in the 
density and in the component of the velocity tangential to the boundary can occur. Length, velocity, and density scales are 

introduced to transform to dimensionless quantities. The unit of length is the characteristic scale of variation along the z axis; 

the unit of velocity is the rotational velocity component at z = 0 and r = r0; the unit of density is the density of the outer flow. 
In this case, the characteristic pressure and acceleration will be equal to unity. We denote by t5 the dimensionless r o at z = 
0. Unless specified otherwise, all quantities are given below in dimensionless form. 

The velocity components corresponding to (r, ~p, z) are written as (u, v, w); p is the pressure; p is the density; and 

g is the acceleration of gravity. The outer flow is assumed to be known and is specified in a form satisfying the equations of 

motion 

u = w = O ,  v = t S / r ,  p = - r 5 2 / ( 2 r 2 ) - y z .  (1.I) 

It should be noted that (1.1) approximates satisfactorily the outer flow observed in laboratory [2, 3] and atmospheric 
[4] vortices. 

The flow in the vortex core is studied in the long-wave approximation along the z axis. We dilate the coordinates and 

functions 

r 2 ---, ~2q, z --* z,  2 u r - - ,  ~2q, vr  ~ ~A, w ~ w, p--* p, p ~ p, g ~ g. 

The boundary ro(z) goes over to yo(Z). After substitution, the equations of  motion and continuity have the form 

q A  n + wA= = O, p~2(qqn _ q2/(2r/) + wqz)12 - pA2 / r l  = -2r lpn ,  

p ( q w  n + w w z )  = - p z  - pg, q,  + wz = 0 ,  qpn + wpz  = 0  

(1.2) 

(the subscripts denote differentiation with respect to the appropriate variable). The following boundary conditions are specified 
at the axis of symmetry and the core boundary 

q = A = 0 ( r /=  0); (1.3) 
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p = - 1 / ( 2 0 o )  - gz ( r /=  ~ ) ;  (1.4) 

q = w(r/oz) ( r /=  ~ ) .  (1.5) 

Condition (1.4) follows from (1.1) and the requirement of  continuity of  pressure at the core boundary. Equation (1.5) 

is a kinematic condition. 

It is assumed that (5 < <  1. The terms in (1.2) proportional to (52 are neglected. The resultant system is transformed 

in the same way as in [1]. New independent variables z ' ,  v, v E [0, 1] are introduced in accordance with the relations z = 

z ' ,  r/ = R(z ' ,  ~,) where R satisfies 

wRy, = q (1.6) 

and the boundary conditions 

R ( z ' , O )  = O, R(z ' ,  I) = ,lo. 
(1.7) 

The initial value R(0, v) is an arbitrary, single-valued, continuous function satisfying (1.7). Boundary conditions (1.3) (for q) 

and (1.5) are automatically satisfied for this definition of R. The unknown boundary rl0(z) is changed to the known boundary 

v = 1. In view of (5 < <  1 the system (1.2) in the variables z ' ,  v takes on the form [I] (henceforth, the prime on z '  is omitted) 

A = A(v ) ,  p = p (v ) ,  (wR, , )z  = 0 ,  

1 

p,,,wz = - ( i -?~P'A'~ ~ J '~'~ + ( J" ~ 7 - k - ~ -  [ ~ e,,)~ + (i - p)g, 
.u 

(1.8) 

where a(v) = (pA2)v; R I, A I, and Pl are the values of R, A, and p with v = 1 (at the core boundary). System (1.8) is solved 

with initial data at z = 0. It is assumed that w = Wo(V) and R = v with z = 0. 

The case A = 0, p = const was studied in [1]. In the present paper the results are generalized for A = A(v), P = p(v). 
Natural restrictions imposed on the functions specified by the initial conditions are as follows: p(v) ~ /3 > 0, Wo(V) >- 3' > 

0. It is assumed that p(v), Wo(V), a(v)/v are continuous and bounded in [0, I]. The boundedness of a(v)/v as v --- 0 follows from 

the requirement of boundedness of the vertical vorticity component at the axis. 

Let us denote x = p(w 2 - -  w2), ~0 = pl/2wo, Y = 2g(l - -  p)z. Then after integration with respect to z from 0 to z 

(1.8) assumes into the form 

y = F(~) ,  

1 1 

F ( z )  = x - (1 - plA21)(R'~ 1 - 1) - / [ a ( t ) R - l ]  dt + f[a(tlt-'] at, 
v II 

t 

R(t) = f (o(~2o + z) - ' /2  du, Ra = R(1). 
0 

(1.9) 

Thus, the problem is reduced to the solution of nonlinear integral equation (1.9). Below, y is assumed to be the independent 

variable. We first prove the local solvability of (1.9) in the vicinity x = 0, y = 0. We then study the behavior of the solution 

x(v, y) as a function of y. 

2. Common Proper t ies  of Ope ra to r  F(x). Let C be the space of continuous functions on the segment [0, 1], and D 

the set of functions x in C such that x > _~2. It is obvious that D is open in the metric space C. 
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Proposition 2.1. F(x) maps D into C. Mapping F(x) is continuously Frbchet differentiable in D, with F'(x)h = ( ! -  

Bl(X) + B2(x))h, where I is the unit operator; B 1 and B 2 are bounded linear operators: 

1 

B,(x)h  = (1 - pla~)R'~ 2 /(~o]2)(~o 2 + z)-ZDh dr+ 
0 

1 f 

+ + 

0 0 

i# 1 

0 0 

Proof.  If  x E D, then by definition R, R 1, aiR, and ah, are bounded on the segment v E [0, 1]. Then vx E D, y(~) 

= F(x) will be a continuous function on [0, 1], hence F(x) E C. We set F(x + h) - -  F(x) - -  F'(x)h = II h II ~o(~, x, h); F(x), 

R and R I are expressed in terms of  functions having continuous derivatives with respect to x as the argument. For given x E D 

the quantities Go, x, h, R, R I, and air  will be bounded vv E [0, 1]. Then by virtue of  the continuous dependence of  F(x) and 

F'(x) on x as on their argument and on v, w(v, x, h) will be uniformly continuous "in its arguments, and w --, 0 as II h U -~ 0. 

By virtue of  the uniform continuity of  ~o, ~0 vanishes uniformly, which proves the existence of  F'(x); F'(x) is continuous in D, 

since it is expressed in terms of  functions depending continuously on x as the argument. 

We now find the conditions for the linear operator F'(x) to have a bounded inverse. To this end, we first prove 

Proposition 2.2. Operator [I + B2(x)] has a bounded inverse, with 

o o  

[ I +  B2(x)l-:h = y ~ ( - 1 ) " B ~ h ,  h e C. (2.1) 
n = O  

Proof.  For fixed x E D the following holds: [~0(~ 2 + x)-3/2/2[ _< M 1, ItaR-2[ _< M 2, M 1, M 2 are constants. Then 

I B2hl -< II h II M~, I B~hl ~ II h II Mn~"/(n!) 2, where M = M1M 2. Thus, the series (2.1) is absolutely convergent. The equality 
(I + B2)(I + B2) - lh  = h is verified directly from (2.1). 

Proposition 2.3. F'(x) has a limited inverse if 

Bl(x)[l  + B2(z) ] - l l  # 1. (2.2) 

Proof.  From the form of B 1 it follows that Yf E C B l f  = const. Then one can verify by direct check that 

[F'(x)]- l f  = (( I  + B2)- :  1)(BI(I  + B2)- ly ) ( I  - B l ( l  + B2)-'  1) -1 + (I + B2)- l f ,  (2.3) 

whence the proof of  the proposition follows. 

The following theorem stems from propositions 2.1-2.3 

Theorem 2.1. Equation (1.9) is solvable in a certain vicinity of the point (x,, y,), where y,  = F(x,), x ,  E D, if 
Bl(X,)[l + B2(x,)]-11 # 1. In this case x is differentiable with respect to y and 

x'y(y.) = [F'(z.)] -I. (2.4) 

Proof. According to propositions 2.1-2.3, the mapping y = F(x) satisfies in the vicinity of x, E D the conditions of 

the implicit function theorem [5]: operator F(x) is continuous in D, F(x) E C, while operator F'(x) exists, is continuous, and 

has a bounded inverse. Hence follows the proof of  the theorem. 

3. St ructure  of  the Solutions. Let us emphasize first that it follows from (2.3) and (2.4) that vy  = const 

! 

~(,,, v)v = [F'(~)l-'v = va(v, :)ai-'(=), 

G(v,z) = [ [+ B2(x)]-'l, a:(x) = 1 -  Bi(x)[I  + B2(x)]-'I. 
(3.1) 

222 



The following proposition establishes qualitatively different behavior of the solutions as functions of the initial data. 

Proposition 3.1. l f  Gl(O) > O, then for sufficiently small v x~v, y) > O, if Gl(O ) < O, then x~,,  y) < O for those 
y for which the inequalities Gl(X) > 0 and Gl(X ) < 0 hold. 

Proof. Since x = 0 E D, F(0) = 0, in line with Theorem 2.1, Eq. (1.9) is solvable in the vicinity of  the point x = 

0, y = 0, if GI(0) ;~ 0. In this case the function x(v, y) is differentiable with respect to y, x~ being expressed by the formula 

(3.1). Obviously, (1.9) is solvable as long as GI(0) ;~ 0 or until x reaches the boundary of  the domain D. From the proof of 
t 

proposition 2.2 it follows that G(v, x) > 0 for sufficiently small ~. Accordingly, if GI(X ) > 0, then Xy > 0; if Gl(X) < 0, 
i 

then Xy < 0 for sufficiently small ~. 

Thus, as y increases, x either increases or decreases in the vicinity of  the vortex axis as a function of  the initial data. 
2 

Further propositions are proved under additional restrictions a(v) > 0, plA1 < 1. The restrictions are natural, since 

the flows in which they are violated possess centrifugal Rayleigh instability. 

In this case in order for the inequality GI(0) > 0 to be valid it is sufficient for a more evident relationship to hold. 

Proposition 3.1a. Ifa(g) > O, plA~ < 1, BI(0)I < 1, then GI(0) > 0. 
Proof.  The inequalities 0 < B2(0)l < BI(0)I < 1 follow from the above assumptions and the form of B 1 and B 2. 

n _ _n+l .  B1B~I. Hence, from (2.1) and Applying the operator BIB 2 to the inequalities 0 < B2(0)l < 1, we obtain 0 < B1B 2 1 < 

the definition of  Gl(X) it follows that GI(0) is represented by an alternating series with monotonically vanishing terms. The 

sum of the series is not smaller than the difference of the first two terms. Then GI(0) > 1 - -  BI(0)I > 0. 

It has been established in Proposition 3.1 that as y increases, x increases or decreases in the vicinity of  the axis as a 

function of  the initial data with y = 0. Below is established how the dependence of  x on v changes qualitatively in the vicinity 

of the axis as y increases. 
2 

Corollary 3.1. Let aO,) > O, PlA1 < 1. l f  Gl(X) > O, then x~y < 0; if Gl(X) < O, then x~y > O for suj~ciently small 
P. 

Proof. Following (3.1), X~y(g, y) = G~0,, X)Gll(x). It follows from the expression for G(g, x) that 

is 

x) = -a(v)R -2 f (eo/2)( g + x)-3/2C(t, dr. 
0 

(3.2) 

It was noted in Proposition 3.1 that G(v, x) > 0 for sufficiently small ~. Then in view of the positiveness of a and G0 it follows 

from (3.2) that G'p < 0 for sufficiently small u. In view of the expression for x~'~., hence follows the proof of the corollary. 

Thus, if G1(x) > 0, then x increases with increasing y in the vicinity of  the axis, the greatest increase of  x occurring 

at the axis. If Gl(X) < 0, x vanishes in the vicinity of the axis, with the maximum decrease at the axis. 

The following proposition establishes a condition whose fulfillment leads to the nonexistence of  a solution of Eq. (1.9) 

with finite y > 0. 
Proposition 3.2. If  a(v) > O, plA~ < 1, GI(0 ) < 0, then Eq. (1.9) has no solution for finite y > O. 
Proof. If GI(0) < 0, then, in line with Theorem 2.1, Eq. (1.9) is solvable in the vicinity of the point x = 0, y = 0 

and has the solution x(v, y). Obviously, the solution can be continued as long as Gl(x) ;~ 0 or until x attains the boundary of 

the domain D. If  the expression Gl(x) vanishes for a certain finite y, the proposition is proved, since, in line with Theorem 

2.1, Eq. (1.9) has no solution in this case. Let us assume that Gl(X) does not vanish. Then, in view of the condition GI(0) < 

and from (2.1) that G(0, x) = 1. We then obtain 

xO.  - 1  . , 

0(we have Gl(x) < 0. It follows from the definitions of G(u, x)and B2(x) 

y) = G 1 (x) < 0 from (3.1). Hence, with allowance for the equahty x = 0 at y = 0 it follows that x(0, y) < 0 for y 

> 0. In view of the positiveness of R, a, and 1 - -  PlA~ we obtain from (1.9) with v = 0 the inequality 

1 

u <_ (1 - plA ) + f . ( t ) t  -x dt. 
0 

(3.3) 

Thus, y is bounded. 

Let us consider the special case plA~ = 1. This equation holds, for example, when there is no jump of density and 

rotational velocity component at the core boundary (u = 1). In this case the results of propositions 3.1 and 3.2 can be extended. 
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Coro l la ry  3.2. Let Pl A2 = 1, a(u) > O. I f  Gl(O ) < 0, then for those x for which the inequality Gl(x ) < 0 is valid 
~y(U, y) < 0 for sufficiently small ~ and x~(v, y) > 0 for v sufficiently close to unity. 

�9 , 2 
Proof.  Inequahty Xy < 0 is proved for sufficiently small v in Proposition 3.1. Let us prove the second part. I f  p 1A1 = 

1, it is obvious that Bl(X) equals the value of B2(x) with p = 1. It then follows from (2.1) and (3.1) that Gl(x) = G(1, x) in 

this case. Hence, taking account of  (3.1) we obtain 

�9 y )  = (3.4) 

t ~ 

where Xy is continuous in u, since G(~, x) is represented by an absolutely convergent series whose terms are continuous in v. 

It follows from (3.4) that x~(1, y) = 1. In view of  the continuity of x'y in u the inequality Xy0,, y) > 0 is also held for those 

v which are sufficiently close to one. 

Thus, in this case x decreases near the axis and increases near the core boundary. 
' l  

Proposi t ion 3.3. I f  p l A  ~ = 1, Eq. (1.9) has no solution with finite y < O. 

Proof.  It follows from (1.9) that y = x with p = 1. Since x > - ~ ,  we have y > -~02(1). 

4. Discussion of  Results.  The motion of  a fluid in the core of  a vertical tornado-like vortex core has been studied 

previously [1] without regard for its rotation about the axis. It has been shown that in this case the vertical velocity component 

in the core varies as a function of z for the same value with any v, i .e.,  the profile of the vertical velocity component as a 

function of i, for fixed z does not deform during motion. However, to construct a model of  the decay of a vortex [1], it was 

most important that the vertical velocity component have a minimum at the axis, so that the stagnation point in the process of 

motion would appear at the vortex axis. Therefore, it was assumed that such a minimum occurs on the initial profile Wo(U). 

In this connection the possibility of deformation of  the profile during motion and the type of the deformation are important 

issues for understanding the mechanisms of the inception of such phenomena as the vortex decay or jump. 

On the basis of  the results we analyze what changes take place when fluid rotation in the core is taken into account. 

For a more obvious presentation we let p = Pl = const. It should be noted that this assumption does not change the qualitative 

conclusions obtained below. We consider the case when Pl < 1, i.e., when the fluid in the core is lighter than the surrounding 

fluid. Such flows are realized in natural vortices [4], as well as in laboratory vortices [3, 6, 7]. 

Since p = const, it follows that the condition z = const corresponds to y = const. Since Pl < 1, the increase of z 

corresponds to the increase of y. Therefore, the above results can be used directly. For example, if GI(0 ) > 0, the vertical 

velocity component in the vicinity of  the vortex axis grows with the increase in height; if GI(0) < 0, it decreases (Proposition 

3.1), with the greatest rate of  decrease at the axis. Thus, the profile of the vertical velocity component is deformed as the height 

increases, and the stagnation point can occur at the axis only if initial data with z = 0 are such that GI(0) < 0. Moreover, 

in this case, according to proposition 3.2, there exists no solution with a certain finite z > 0. One can assume as in [1] that 

the nonexistence of solution suggests the decay of the vortex. Then GI(0) < 0 is the condition of decay, and the restrictions 

on the vortex height can be obtained using (3.3). 

Let us carry out qualitative estimates in dimensional form. Assuming that the fluid in the vortex core rotates according 

to a rigid rotation law (which is consistent with observations [2, 4]), we obtain A = (Vl/V0)V. Here v 1 and v 0 are the rotational 

velocity components at z = 0 and r = r 0 in the core and outer flow, respectively (in general, v 1 ;~ v o if we introduce a 

discontinuity of the rotational velocity component at the core boundary). By the definition of  y, inequality (3.3) has the form 

z < p~176 + pxv2 (4.1) 

- 2g(po - Pl) 

(Pl and Po are the densities in the vortex core and in the outer flow, Pt < P0). 

We find an expression for GI(0), assuming that w 0 = const. This assumption well approximates the experimental data 

of  [2]. Then 

(n!) 2 2p~'w'~ (n!12(n + 11' n=O n=O 

2 2 
where M = (Vl/W0) 2. Normally at the interface of the core and the outer flow p0Vo ~- p lv l .  Then 
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OO 
G,(O) ~ ~ ( - 1 ) " M "  

. = o  (n ! )  2 

Hence GI(0) > 0 if M < 1.4. Thus, the vertical velocity component in the vicinity of the vortex axis will increase if the 

inequality (Vl/W0) 2 < 1.4 is valid. 
By hypothesis, the nonexistence of a solution for finite z is the condition for inception of vortex decay. The condition 

is satisfied if GI(0) < 0. The vortex core observed in the experiments [3, 7] and in nature [8] is of finite height. Therefore, 

if the assumption is true, theoretical estimates of the vortex height and GI(0) should agree with the measurement results [3, 

7, 8]. 
To within the coefficient 1/2, Eq. (4.1) is analogous to the expression obtained in [1] for the vortex height without 

regard for fluid rotation in the core. Therefore, the height calculated from (4.1) agrees in order of magnitude with the 

observation results in [3, 7, 8]. 
The quantity GI(0) can be calculated from [7]. We assume that v 1 -_- v o = 100 cm/sec, w 0 = 40-50 cm/sec. For M 

= 4; 6; 7 we have GI(0) ~ -0 .35;  -0 .2 ;  -0 .05  < 0. 
The features of the motion of a swirled fluid in the core of a vertical, tornado-like vortex has been analyzed. A rigorous 

criterion for identifying qualitatively different behavior of the solutions as a function of the initial data has been revealed. 
Analytical estimates agree in the order of magnitude with the observation results for laboratory and natural vortices. A 

theoretical basis has been proposed for numerical calculations of the fluid flow in the cores of vertical tornado-like vortices. 
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